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Algebra Qualifying Exam I (January 2019)

1. (10 points) Let G be a group of order 175 = 5% - 7. Prove that G is an abelian group.

2. (15 points) Let p be a prime number and let F, be the finite field of order p. Let GLy(F,)
be the group of invertible 2 x 2 matrices over F,,.

(a) Determine the order of the group GLa(F)).
(b) Prove that the unipotent subgroup

v={b 4

is a p-Sylow subgroup of GLo(F,).

aeF,,}.

(c) Determine the number n, of p-Sylow subgroups in GLy(F,).

3. (15 points) Consider the ring
2[V3] = {a+bv3 | a,be2}.
Define N(a + bv/3) = |a® — 30?|.
(a) Prove that the following map is a ring homomorphism
m: Z|V3) — Z/11,  a+bV3+— a+5b

(b) Prove that Z[v/3] with the function N forms a Euclidean domain.

(c) Prove that if N(a + bv/3) is a prime integer, then the principal ideal (a + bVv/3) is a
prime ideal of Z[v/3]. (Hint. You may use the conclusion of part (b).)

4. (10 points) Let A = Z be the ring of integers. Consider the subset
S={70n+1|n¢eZ}

(a) Prove that S is a multiplicative subset of Z.
(b) Find all the maximal ideals of the ring S~!A.

5. (10 points) Let a and b be positive integers. Let ¢ > 0 be the greatest common divisor of
a and b. Prove that z° — 1 is the greatest common divisor of the polynomials z* — 1 and
z® — 1 in the polynomial ring Q[z].

6. (10 points) Let B be an integral domain and let A be a subring of B. Let M be a projective
A-module. Prove that the tensor product B ® 4 M is a projective B-module.
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1. (10 points) Let G be a group of order 175 = 52 - 7. Prove that G is an abelian group.
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2. (15 points) Let p be a prime number and let F,, be the finite field of order p. Let GLy(Fy)
be the group of invertible 2 x 2 matrices over F,.

(a) Determine the order of the group GLo(F}).

(b) Prove that the unipotent subgroup

7={l 1

is a p-Sylow subgroup of GLy(F}).
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(c) Determine the number n, of p-Sylow subgroups in GLy(F,).
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3. (15 points) Consider the ring
Z[V3] = {a+b\/§ | a,be Z}.

Define N(a + bv/3) = |a® — 38?|.

(a) Prove that the following map is a ring homomorphism

m: Z[V3| — Z/11, a4 bV/3+—> a+5b

(b) Prove that Z[/3] with the function N forms a Euclidean domain.
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(c) Prove that if N(a + bv/3) is a prime integer, then the principal ideal (a + bv/3) is a
prime ideal of Z[v/3].

Hint. You may use the conclusion of part (b).
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4. (10 points) Let A = Z be the ring of integers. Consider the subset
S={70n+1|neZ}

(a) Prove that S is a multiplicative subset of Z.

(b) Find all the maximal ideals of the ring S~1A.
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5. (10 points) Let a and b be positive integers. Let ¢ > 0 be the greatest common divisor of
a and' b. Prove that z¢ — 1 is the greatest common divisor of the polynomials z* — 1 and
z° — 1 in the polynomial ring Q[z].

Page 8 of 9



6. (10 points) Let B be an integral domain and let A be a subring of B. Let M be a projective
A-module. Prove that the tensor product B ® 4 M is a projective B-module.
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